The maximum time of 2-neighbour bootstrap percolation: Algorithmic aspects
نویسندگان
چکیده
منابع مشابه
The maximum time of 2-neighbour bootstrap percolation: Algorithmic aspects
In 2-neighbourhood bootstrap percolation on a graph G, an infection spreads according to the following deterministic rule: infected vertices of G remain infected forever and in consecutive rounds healthy vertices with at least 2 already infected neighbours become infected. Percolation occurs if eventually every vertex is infected. In this paper, we are interested to calculate the maximal time t...
متن کاملThe Maximum Time of 2-Neighbour Bootstrap Percolation: Complexity Results
In 2-neighborhood bootstrap percolation on a graph G, an infection spreads according to the following deterministic rule: infected vertices of G remain infected forever and in consecutive rounds healthy vertices with at least 2 already infected neighbors become infected. Percolation occurs if eventually every vertex is infected. The maximum time t(G) is the maximum number of rounds needed to ev...
متن کاملThe maximum time of 2-neighbour bootstrap percolation in grid graphs and some parameterized results
In 2-neighborhood bootstrap percolation on a graphG, an infection spreads according to the following deterministic rule: infected vertices of G remain infected forever and in consecutive rounds healthy vertices with at least two already infected neighbors become infected. Percolation occurs if eventually every vertex is infected. The maximum time t(G) is the maximum number of rounds needed to e...
متن کاملMaximum Percolation Time in Two-Dimensional Bootstrap Percolation
We consider a classical model known as bootstrap percolation on the n×n square grid. To each vertex of the grid we assign an initial state, infected or healthy, and then in consecutive rounds we infect every healthy vertex that has at least 2 already infected neighbours. We say that percolation occurs if the whole grid is eventually infected. In this paper, contributing to a recent series of ex...
متن کاملOn the Maximum Running Time in Graph Bootstrap Percolation
Graph bootstrap percolation is a simple cellular automaton introduced by Bollobás in 1968. Given a graph H and a set G ⊆ E(Kn) we initially ‘infect’ all edges in G and then, in consecutive steps, we infect every e ∈ Kn that completes a new infected copy of H in Kn. We say that G percolates if eventually every edge in Kn is infected. The extremal question about the size of the smallest percolati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2015
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2015.02.012